Self-avoiding polygons on the square lattice
نویسندگان
چکیده
منابع مشابه
Self-avoiding polygons on the square lattice
We have developed an improved algorithm that allows us to enumerate the number of self-avoiding polygons on the square lattice to perimeter length 90. Analysis of the resulting series yields very accurate estimates of the connective constant μ = 2.638 158 529 27(1) (biased) and the critical exponent α = 0.500 0005(10) (unbiased). The critical point is indistinguishable from a root of the polyno...
متن کاملOsculating and neighbour-avoiding polygons on the square lattice*
We study two simple modifications of self-avoiding polygons (SAPs). Osculating polygons (OP) are a super-set in which we allow the perimeter of the polygon to touch at a vertex. Neighbour-avoiding polygons (NAP) are only allowed to have nearest-neighbour vertices provided these are joined by the associated edge and thus form a sub-set of SAPs. We use the finite lattice method to count the numbe...
متن کاملA parallel algorithm for the enumeration of self-avoiding polygons on the square lattice
We have developed a parallel algorithm that allows us to enumerate the number of self-avoiding polygons on the square lattice to perimeter length 110. We have also extended the series for the first 10 area-weighted moments and the radius of gyration to 100. Analysis of the resulting series yields very accurate estimates of the connective constant μ= 2.638 158 530 31(3) (biased) and the critical...
متن کاملA new transfer-matrix algorithm for exact enumerations: self-avoiding polygons on the square lattice
We present a new and more efficient implementation of transfer-matrix methods for exact enumerations of lattice objects. The new method is illustrated by an application to the enumeration of self-avoiding polygons on the square lattice. A detailed comparison with the previous best algorithm shows significant improvement in the running time of the algorithm. The new algorithm is used to extend t...
متن کاملSelf-avoiding walks and polygons on the triangular lattice
We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1999
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/32/26/305